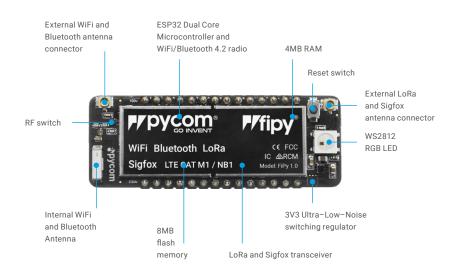
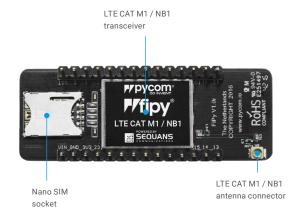


Datasheet





1.0	Overview	03	13.0	Bluetooth	12
2.0	Features	03	13.1 13.2	Supported features Specification	12 12
3.0	Specifications	04	13.2.1		12
	•	0.4		Receiver - Enhanced Data Rate	13
3.1 3.2	CPU	04 04		Receiver – Bluetooth LE Transmitter – Basic Data Rate	14 15
3.3	Memory WiFi	04		Transmitter – Enhanced Data Rate	16
3.4	Bluetooth	04		Transmitter – Bluetooth LE	17
3.5	LoRa	04			
3.6	Sigfox	04	14.0	LoRa	17
3.7	LTE CAT-M1/NB-IoT	04	14.1	Supported features	17
3.8	RTC	04	14.2	Specifications	18
3.9	Security	04	15.0	Sigfox	22
3.10	Hash / encryption	04	15.0	Sigiox	22
4.0	Block Diagram	04	15.1	Frequencies	22
4.0	Block Blagfairi	0-7	15.2	Specifications	23
5.0	Pinout	05	16.0	LTE CAT-M1/NB-IoT	24
6.0	Pin Details	06	16.1 16.2	Supported features Specifications	24 24
6.1	Remapping Pins	07	16.2.1	Supported LTE bands	24
7.0	ESP32 Peripherals	08	16.3	SIM Card requirements	24
	•		16.4	Certified carriers	24
7.1	RTC	08	17.0	6LoWPAN	25
8.0	Programming the device	80	18.0	Electrical Characteristics	25
8.1	UART	80	10.0	Electrical Characteristics	25
8.2	Wi-Fi	08	18.1	Absolute maximum ratings	25
8.2.1	Telnet	80	18.2	Input/Output characteristics	25
8.2.2	FTP	80	19.0	Minimum Recommended Circuit	26
9.0	Boot modes	09			
9.1	Bootloader mode	09	20.0	Mechanical Specifications	27
9.2	Safe boot	09	01.0	B	~7
10.0	Dawar	00	21.0	Recommended Land Pattern	27
10.0	Power	09	22.0	Soldering Profile	28
10.1	Current consumption by power		22.0	Soldering Profile	20
	modes/features measured at 5V	09	23.0	Ordering Information	28
11.0	Memory Map	10	25.0		20
11.1	Flash	10	24.0	Packaging	28
11.2	RAM	10			
11.3	ROM and eFuses	10	25.0	Certification	29
			25.1	EU Regulatory Conformance	29
12.0	WiFi	11	25.2	Federal Communication Commission	
12.1	Supported features	11		Interference Statement	29
12.2	Specifications	11	25.2.1	RF Warning Statement	29
			25.2.2	OEM integrator conditions	29
			25.2.3	End Product Labelling	30
			25.2.4	Manual Information to the End User	30
			26.0	Revision History	30

Size 55mm x 20mm x 9.7mm (with headers) Temperature Range

-20 to +85 °C

1.0 Overview

With Sigfox, LoRa, WiFi, BLE and cellular LTE-CAT M1/NB1, the FiPy is the latest Pycom MicroPython enabled micro controller on the market today – the perfect enterprise grade IoT platform for your connected Things. Create and connect your things everywhere. Fast.

2.0 Features

- Five Networks: WiFi, BLE, cellular LTE-CAT M1/NB1, LoRa and Sigfox
- Powerful CPU.
- Can also double up as a Nano LoRa gateway
- MicroPython enabled
- Fits in a standard breadboard (with headers)
- Ultra-low power usage: a fraction compared to other connected micro controllers
- World ready, one product covers all LTE-M bands

3.1 CPU

- Xtensa® dual-core 32-bit LX6 microprocessor(s), up to 600 DMIPS
- Hardware floating point acceleration
- Python multi-threading
- An extra ULP-coprocessor that can monitor GPIOs, the ADC channels and control most of the internal peripherals during deep-sleep mode while only consuming 25uA.

3.2 Memory

- RAM: 520KB + 4MB
- External flash: 8MB

3.3 WiFi

- 802.11b/g/n 16mbps

3.4 Bluetooth

- Low energy and classic

3.5 LoRa

- LoRaWAN stack Class A and C devices
- Node range: Up to 40km
- Nano-gateway: Up to 22km (Capacity up to 100 nodes)

3.6 Sigfox

- Class 0 device. Maximum Tx power:
 - +14dBm(Europe)
 - +20dBm (America)
 - +20dBm (Australia and New Zealand)
- Node range: Up to 50km

3.7 LTE CAT-M1/NB-IoT

- One single chip for both CAT M1 and NB1
- 3GPP release 13 LTE Advanced Pro
- Supports narrowband LTE UE categories M1/NB1
- Integrated baseband, RF, RAM memory and power management
- Reduced TX power class option
- Peak power estimations:
 TX current = 420mA peak @1.5Watt
 RX current = 330mA peak @1.2Watt
- Extended DRX (eDRX) and PSM features for long sleep duration use cases

3.8 RTC

- Running at 32KHz

3.9 Security

- SSL/TLS support
- WPA Enterprise security

3.10 Hash / encryption

- SHA
- MD5
- DES
- AES

4.0 Block Diagram

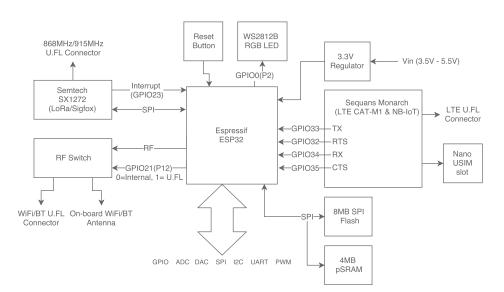


Figure 1 – System block diagram

Absolute MAX per pin 12mA recommended 6mA LoRa/Sigfox External Antenna Connector WS2812 LED Reset Button Connected to PROGRAM RXØ PØ GPI03 40 the LTE radio TX0 UØTXD EMACRXD2 3V3 A Up to 1.2-A Maximum Load Capability. Output ONLY. i Bluetooth LoRa GPI01 GPI014 EMACTXD2 ADC2_1 **BWCTXCLK** RTCI016 Touch6 MTMS HSPICLK SDCLK HS2CLK Touch1 RTCI011 GPI00 HS2DATA1 SDDATA1 HSPIHD HS2CMD SDCMD HSPICS0 TX1 P3 Touch0 RTCI010 ADC2_0 EMACTXER GPI04 GPI025 EMACRXD0 ADC2_8 RTCI06 RX1 EMACRXD3 GPI015 ADC2_9 P4 MTD0 Touch3 RTCI013 ADC2_3 GPI026 EMACRXD1 RTCI07 Connected to the LoRa/Sigfox radio HS1DATA6 VSPICS0 BWCRXCLK) GPI05 ADC1_5 RTCI08 Touch8 Touch7 RTCI017 ADC2_7 EMACRXDV ADC1_4 Touch9 GPI027 GPI032 RTCI09 GPI019 UOCTS EMACTXDO GPI034 ADC1_6 RTCI04 SDDATA0 HSPIWP GPI035 Touch2 RTCI012 GPI02 22 ADC1_7 RTCI05 Only Input pins! P9 HS2DATA2 SDDATA2 HSPIQ MTDI Touch5 RTCI015 EMACTXD3 GPI012 18 GPI039 ADC1_3 ADC2_5 RTCI03 No pullup/pulldown CLK SCL P10 HS2DATA3 SDDATA3 HSPIID MTCK Touch4 RTCI014 ADC2_4 EMACRXER GPI013 20 7 GPI038 ADC1_2 RTCI02 internal resistance MOSI 6 GPI037 MISO P11 VSPIWP UØRTS EMACTXD1 GPI022 39 ADC1_1 RTCI01 P14 P12 VSPIHD EMACTXEN GPI021 42 GPI036 ADCPA ADC1_0 RTCIO0 WiFi external / internal Hack your FiPy antenna selection control pin WiFi / Bluetooth External Antenna Connector Connect to a 10nF capacitor to enable Touch Pin function Power Internal Functions Low Level Bootloader GND | 36 | GP1023 | KSPIID | KSISTROBE LORA / Sigfox Interrupt | Coproll | Copro Serial Pin P2 + GND Analog Pin Boot modes and safe boot Control Physical Pin P12 + 3V3 P/Pycom Port Pin 1-3 sec Safe boot, latest firmware is selected **//**fipy LTE antenna connector Nano SIM card socket Touch Pin LTE CAT M1 / NB1 4-6 sec Safe boot, previous user update selected DAC Pin SEQUANS → PWM Pin 7-9~Sec Safe boot, the factory firmware is selected 22/03/18

6.0 Pin Details

Table 1 – Module pinout

Module Pin	ESP32 GPI0	Pin Name	Default Function	ADC	PWM	RTC†	Notes
1	-		Reset				Active Low, connected to on-board button
2	3	P0	RX0 (Programming)		•		Used by the bootloader and to program the module
3	1	P1	TX0 (Programming)		•		Used by the bootloader and to program the module
4	0	P2		2*	•	•	If tied to GND during boot the device will enter bootloader mode. Connected to the on–board RGB LED
5	4	P3	TX1	2*	•	•	
6	15	P4	RX1	2*	•	•	JTAG TDO, SD card CMD
7	5	_	LoRa/Sigfox radio SPI CLK		•		Not recommended for external use
8	27	-	LoRa/Sigfox radio SPI MOSI	2*	•	•	Not recommended for external use
9	19	_	LoRa/Sigfox radio SPI MISO		•		Not recommended for external use
10	2	P8		2*	•	•	SD card DAT0
11	12	P9	SDA	2*	•	•	JTAG TDI
12	13	P10	SCL (I2C) / CLK (SPI)	2*	•	•	JTAG TCK
13	22	P11	MOSI		•		
14	21	P12			•		If tied to 3.3V during boot the device enters safe boot mode, JTAG MISO, External WiFi/BT antenna switch, Low = on-board, High = U.FL
15	36	P13		1		•	Input only
16	37	P14	MISO	1		•	Input only
17	38	P15	Sequans modem interrupt	1		•	Input only, not recommended for external use
18	39	P16		1		•	Input only

6.0 Pin Details

Table 1 - Module pinout

Module Pin	ESP32 GPI0	Pin Name	Default Function	ADC	PWM	RTC†	Notes
19	35	P17	Sequans modem CTS	1		•	Input only, not recommended for external use
20	34	P18	Sequans modem RX	1		•	Input only, not recommended for external use, 921600 Baud
21	32	P19	Sequans modem RTS	1	•	•	Not recommended for external use
22	33	P20	Sequans modem TX	1	•	•	Not recommended for external use, 921600 Baud
23	26	P21		2*	•	•	DAC
24	25	P22		2*	•	•	DAC
25	14	P23		2*	•	•	JTAG TMS, SD card SCLK
26	-	_	Regulated 3.3V supply				Output only, do not feed 3.3V into this pin or you can damage the regulator
27	-	_	Ground				
28	_	_	Voltage Input				Accepts a voltage between 3.5V and 5.5V
_	23	_	LoRa/Sigfox radio interrupt				
_	18	_	LoRa/Sigfox radio chip select				

[†] The pins on the RTC power domain can be used during deep sleep, specifically GPIO pins will maintain their state while in deep sleep.

6.1 Remapping Pins

The ESP32 features comprehensive pin remapping functionality. This allows peripherals to be mapped onto almost any available GPIO pins. The above table merely shows the default assignments. For example, the default mapping has the SPI and I2C clocks overlapping,

meaning both cannot be used simultaneously without remapping one to a different pin. For a detailed guide of what peripheral can be assigned to what pins please read "Appendix A – ESP32 Pin Lists" of the ESP32 datasheet.

 $[\]mbox{*}$ ADC2 is currently not supported in the micropython firmware

7.0 ESP32 Peripherals

Table 2 - Peripherals

Peripheral	Count	Pins
UART	3	Remappable to any GPIO. Note: P13–18 can only be mapped to RX or CTS since they are input only.
I2C	2	Remappable to any GPIO except P13–18 since they are input only and I2C is bi-directional.
SPI	3	Remappable to any GPIO. Note: P13–18 can only be mapped to MISO since they are input only.
CAN*	1	Remappable to any GPIO. Note: P13–18 can only be mapped to RX since they are input only.
JTAG	1	TDO = P4, TDI = P9, TCK = P10, TMS = P24
PWM	1	All GPIO except P13-18 which are input only
ADC	18	Fixed mapping, see Table 1, Only ADC 1 is supported in our micropython firmware.
DAC	2	Only available on P21 and P22
SD	1	DAT0 = P8, SCLK = P23, CMD = P4

^{*} Requires an external CAN bus transceiver, we recommend the SN65HVD230 from Texas Instruments.

For a more detailed description of the ESP32 peripherals along with peripherals not currently supported by our firmware, please check the ESP32 datasheet.

7.1 RTC

Our modules by default all use the internal RC oscillator at 150kHz for the RTC. In the case of the FiPy, the external RTC pins are used by the LTE module, and therefore the external RTC oscillator is not available.

8.0 Programming the device

8.1 UART

By default, the modules run an interactive python REPL on UART0 which is connected to P0 (RX) and P1 (TX) running at 115200 baud. The easiest way to connect to the FiPy is via our expansion board, but any USB UART adapter will suffice. Code can be run via this interactive REPL or you can use our PyMakr plugin for Atom or Visual Studio Code to upload code to the board.

8.2 Wi-Fi

By default, the FiPy also acts as a Wi–Fi access point SSID: fipy–wlan–XXXX
Password: www.pycom.io
Once connected to the FiPy's Wi–Fi network you can access it in two ways.

8.2.1 Telnet

Running on port 23 is a telnet server. This acts in a very similar way to the UART. It presents you with an interactive REPL and can also be used to upload code via PyMakr.

8.2.2 FTF

The FiPy also runs a FTP server that allows you to copy files to and from the device, include an SD card if one is connected. To connect to this FTP server, you need to use plain FTP (un-encrypted) with the following credentials: User: micro

Password: python

9.0 Bootmodes

9.1 Bootloademode

In order to update the firmware of the FiPy device, it needs to be placed into bootloader mode. In order to do this, P2 needs to be connected to ground when the device reboots. Once in bootloader mode you can use the Pycom firmware update tool to update to the latest official firmware. If you are developing your own firmware based on our open–source firmware, a flashing script is provided with the source code.

Table 3 - Boot modes

9.2 Safboot

The micropython firmware features a safe boot feature that skips the boot.py and main.py scripts and goes straight to the REPL. This is useful if the device is programmed with code that causes the device to crash or become inaccessible. To access this mode, you need to connect P12 to 3.3V and reset the device. Upon entering safe boot mode, the on–board LED will begin to blink orange. Depending on the duration the pin is held at 3.3V, a different firmware will be run.

0-3 Seconds	3-6 Seconds
Current firmware without running boot.py or main.py	Previous firmware if the firmware was uploaded via OTA (without running boot.py and main.py)

10.0 Power

The FiPy features an on–board voltage regulator that takes 3.5V-5.5V from the VIN pin and regulates it to 3.3V. It is important to only use the 3.3V as an output and not try to feed 3.3V into this pin as this could damage the regulator.

10.1 Currenton sumption by power modes/features measured at 5V

Table 4 – Power consumption by feature

Mode	Min	Avg.	Max	Units
Idle (no radios)	-	62.7	-	mA
LoRa Transmit*	-	156	-	mA
Sigfox Transmit†	-	192	-	mA
LTE Transmit	-	173	285	mA
LTE Attached	-	74.5	-	mA
WiFi AP	-	126	-	mA
WiFi client	-	137	-	mA
Bluetooth	-	121	-	mA
Deep sleep	-	24	-	μА

^{*} More details can be found in section 14.2

[†] More details can be found in section 15.2

11.0 Memory Map

11.1 Flash

Table 5 – Flash memory map

Name	Description	Start address	Size
NVS	Non-volatile RAM area. Used by the NVS API	0x9000	0x7000
Firmware Slot 0	First firmware slot. Factory firmware is flashed here	0x10000	0x180000
OTA info	Information about the current active firmware	0x190000	0x1000
Firmware Slot 1	Second firmware slot	0x1A0000	0x180000
File system	504KB file system on devices with 4MB flash	0x380000	0x7F000
Config	Config area for LoRa, Sigfox and LTE	0x3FF000	0x1000
File system (2)	4MB file system on devices with 8MB flash	0x400000	0x400000

11.2 RAM

Table 6 – RAM memory map

Name	Description	Size
On-chip SRAM	Internal RAM memory used by the 2 xtensa CPUs	520KB
Fast RTC RAM	Fast RAM area accessible by the xtensa cores during boot and sleep modes	8KB
Slow RTC RAM	Slow RAM area accessible by the Ultra-Low Power Coprocessor during deep sleep	8KB
External pSRAM	External QSPI RAM memory clocked @ 40MHz	4MB

11.3 ROM and eFuses

Table 7 – Miscellaneous memory

Name	Description	Size
On-chip ROM	Contains core functions and boot code.	448KB
eFuse	256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash–Encryption and Chip–ID	1kbit

12.0 WiFi

12.1 Supported features

- 802.11 b/g/n/e/i
- 802.11 n (2.4 GHz), up to 150 Mbps
- 802.11 e: QoS for wireless multimedia technology
- WMM-PS, UAPSD
- A-MPDU and A-MSDU aggregation -
- Block ACK
- Fragmentation and defragmentation

- Automatic Beacon monitoring/scanning
- 802.11 i security features: pre-authentication and TSN
- Wi-Fi Protected Access (WPA)/WPA2/WPA2-Enterprise/Wi-Fi Protected Setup (WPS)
- Infrastructure BSS Station mode/SoftAP mode
- Wi-Fi Direct (P2P), P2P Discovery, P2P Group Owner mode and P2P Power Management

12.2 Specifications

Table 8 - WiFi specifications

Description	Min	Тур.	Max	Unit
Input Frequency	2412	-	2484	MHz
Tx power Output power of PA for 72.2 Mbps	13	14	15	dBm
Output power of PA for 11b mode	19.5	20	20.5	dBm
	Sens	sitivity		
DSSS, 1Mbps	-	-	98	dBm
CCK, 11 Mbps	-	-	91	dBm
OFDM, 6 Mbps	-	-	93	dBm
OFDM, 54 Mbps	-	-	75	dBm
HT20, MCS0	-	-	93	dBm
HT20, MCS7	-	-	73	dBm
HT40, MCS0	-	-	90	dBm
HT40, MCS7	-	-	70	dBm
MCS32	-	-	89	dBm
	Adjacent cha	nnel rejection		
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	_	37	_	dB
HT20, MCS7	-	20	-	dB

13.0 Bluetooth

13.1 Supported features

- Compliant with Bluetooth v4.2 BR/EDR and BLE specification
- Class-1, class-2 and class-3 transmitter without external power amplifier
- Enhanced power control
- +12 dBm transmitting power
- NZIF receiver with -97 dBm sensitivity
- Adaptive Frequency Hopping (AFH)
- Standard HCI based on SDIO/SPI/UART
- High-speed UART HCI, up to 4 Mbps
- BT 4.2 controller and host stack

- Service Discover Protocol (SDP)
- General Access Profile (GAP)
- Security Manage Protocol (SMP)
- ATT/GATT
- HID
- All GATT-based profile supported
- SPP-like GATT-based profile
- BLE Beacon
- A2DP/AVRCP/SPP, HSP/HFP, RFCOMM
- CVSD and SBC for audio codec
- Bluetooth Piconet and Scatternet

13.2 Specification

13.2.1 Receiver - Basic Data Rate

Table 9 - Receiver (basic data rate) specifications

Parameter		Min	Тур.	Max	Unit
Sensitivity @0.1% BER		-	-94	-	dBm
Maximum received signal @0.1% BER		0	-	-	dBm
Co-channel C/I		-	+7	-	dB
	F = F0 + 1 MHz	_	-	-6	dB
	F = F0 - 1 MHz	-	-	-6	dB
Adiacant channel calcatinity O/I	F = F0 + 2 MHz	-	-	-25	dB
Adjacent channel selectivity C/I	F = F0 - 2 MHz	-	-	-33	dB
	F = F0 + 3 MHz	-	-	-25	dB
	F = F0 - 3 MHz	-	-	-45	dB
	30Mhz ~ 2000MHz	-10	-	-	dBm
	2000MHz ~ 2400MHz	-27	-	-	dBm
Out-of-band blocking performance	2500MHz ~ 3000MHz	-27	-	-	dBm
	3000MHz ~ 12.5GHz	-10	-	-	dBm
Intermodulation		-36	-	-	dBm

13.2.2 Receiver - Enhanced Data Rate

Table 10 – Receiver (basic data rate) specifications

Parameter		Min	Тур.	Max	Unit		
$\pi/4$ DQPSK							
Sensitivity @0.1% BER		-	-90	-	dBm		
Maximum received signal @0.1% BER		-	0	-	dBm		
Co-channel C/I		-	11	-	dB		
	F = F0 + 1 MHz	-	-7	-	dB		
	F = F0 - 1 MHz	-	-7	-	dB		
Adia cont channel calcativity C/I	F = F0 + 2 MHz	-	-25	-	dB		
Adjacent channel selectivity C/I	F = F0 - 2 MHz	-	-35	-	dB		
	F = F0 + 3 MHz	-	-25	_	dB		
	F = F0 - 3 MHz	-	-45	-	dB		
	8DF	PSK					
Sensitivity @0.1% BER		-	-84	-	dBm		
Maximum received signal @0.1% BER		-	-5	-	dBm		
C/I c-channel		-	18	-	dB		
	F = F0 + 1 MHz	_	2	-	dB		
	F = F0 - 1 MHz	-	2	-	dB		
Adia cont channal colorativity O/I	F = F0 + 2 MHz	-	-25	-	dB		
Adjacent channel selectivity C/I	F = F0 - 2 MHz	-	-25	-	dB		
	F = F0 + 3 MHz	-	-25	-	dB		
	F = F0 - 3 MHz	-	-38	-	dB		

13.2.3 Receiver - Bluetooth LE

Table 11 – Receiver (BLE) specifications

Parameter		Min	Тур.	Max	Unit
Sensitivity @30.8% PER		-	-97	-	dBm
Maximum received signal @30.8% PER		0	-	-	dBm
Co-channel C/I		-	+10	-	dB
	F = F0 + 1MHz	-	-5	-	dB
	F = F0 - 1MHz	-	-5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2MHz	-	-25	-	dB
	F = F0 - 2MHz	-	-35	-	dB
	F = F0 + 3MHz	-	-35	-	dB
	F = F0 - 3MHz	-	-45	-	dB
	30MHz ~ 2000MHz	-10	-	-	dB
Out of hand blacking performance	2000MHz ~ 2400MHz	-27	-	-	dBm
Out-of-band blocking performance	2500MHz ~ 3000MHz	-27	_	_	dBm
	3000MHz ~ 12.5GHZ	-10	-	-	dBm
Intermodulation		-36	_	-	dBm

13.2.4 Transmitter - Basic Data Rate

Table 12 – Transmitter (basic data rate) specifications

Parameter		Min	Тур.	Max	Unit
RF transmit power		-	0	-	dBm
Gain control step		_	±3	_	dBm
RF power control range		-12	-	+12	dBm
+20 dB bandwidth		-	0.9	_	MHz
	F = F0 + 1 MHz	_	-24	_	dBm
	F = F0 - 1 MHz	-	-16.1	_	dBm
	F = F0 + 2 MHz	-	-40.8	_	dBm
Adjacent channel transmit power	F = F0 - 2 MHz	-	-35.6	-	dBm
Adjacent channel transmit power	F = F0 + 3 MHz	-	-45.7	-	dBm
	F = F0 - 3 MHz	-	-40.2	-	dBm
	F = F0 + >3 MHz	-	45.6	_	dBm
	F = F0 - >3 MHz	-	44.6	_	dBm
$\Delta f 1_{avg}$		_	-	155	KHz
$\Delta f 2_{\text{max}}$		133.7			KHz
$\Delta f 2_{avg}/\Delta f 1_{avg}$		_	0.92	_	-
ICFT		-	-7	_	KHz
Drift rate		-	0.7	_	KHz/50µs
Drift (1 slot packet)		-	6	_	KHz
Drift (5 slot packet)		-	6	_	KHz

13.2.5 Transmitter – Enhanced Data Rate

Table 13 – Transmitter (enhanced data rate) specifications

Parameter		Min	Тур.	Max	Unit
RF transmit power		-	0	-	dBm
Gain control step		_	±3	-	dBm
RF power control range		-12	-	+12	dBm
π/4 DQPSK max w0		-	-0.72	_	KHz
π/4 DQPSK max wi		-	-6	-	KHz
π/4 DQPSK max wi + w0		-	-7.42	-	KHz
8DPSK max w0		-	0.7	-	KHz
8DPSK max wi		-	-9.6	-	KHz
8DPSK max wi + w0			-10		KHz
	RMS DEVM	-	4.28	-	%
$\pi/4$ DQPSK modulation accuracy	99% DEVM	-	-	30	%
	Peak DEVM	-	13.3	-	%
	RMS DEVM	-	5.8	-	%
8 DPSK modulation accuracy	99% DEVM	-		20	%
	Peak DEVM	-	14	-	%
	F = F0 + 1MHz	-	-34	-	dBm
	F = F0 - 1MHz	-	-40.2	-	dBm
	F = F0 + 2MHz	-	-34	-	dBm
In-band spurious emissions	F = F0 - 2MHz	-	-36	-	dBm
	F = F0 + 3MHz	-	-38	-	dBm
	F = F0 - 3MHz	-	-40.3	-	dBm
	F = F0 ± >3MHz	-	-	-41.5	dBm
EDR differential phase coding		-	100	-	%

13.2.6 Transmitter - Bluetooth LE

Table 14 - Transmitter (BLE) specifications

Parameter		Min	Тур.	Max	Unit
RF transmit power		-	0	_	dBm
Gain control step		-	±3	_	dBm
RF power control range		-12	-	+12	dBm
	F = F0 + 1MHz	-	-14.6	-	dBm
	F = F0 - 1MHz	-	-12.7	-	dBm
	F = F0 + 2MHz	-	-44.3	-	dBm
Adjacent channel transmit newer	F = F0 - 2MHz	-	-38.7	-	dBm
Adjacent channel transmit power	F = F0 + 3MHz	-	-49.2	_	dBm
	F = F0 - 3MHz	-	-44.7	-	dBm
	F = F0 + >3MHz	-	-50	-	dBm
	F = F0 - >3MHz	-	-50	_	dBm
$\Delta f1_{avg}$		-	-	265	KHz
$\Delta f 2_{\text{max}}$		247	-	_	KHz
$\Delta f 2_{avg}/\Delta f 1_{avg}$		-	-0.92	-	-
ICFT		_	-10	_	KHz
Drift rate		_	0.7	_	KHz/50µs
Drift		-	2	_	KHz

14.0 LoRa

14.1 Supported features

Table 15 – Supported LoRa features

Part Number	Frequency Range	LoRa Parameters			
		Spreading factor	Bandwidth	Effective Bitrate	Sensitivity
Semtech SX1272	860-1020MHz	6 - 12	125 – 500 kHz	0.24 - 37.5 kpbs	−117 to −137 dBm

Table 16 – LoRa modem performance

Spreading Factor	Nominal Rb (bps)	Sensitivity (dBm)
6	9380	-122
12	293	-137
6	18750	-119
12	588	-134
6	37500	-116
12	1172	-131
	6 12 6 12 6	6 9380 12 293 6 18750 12 588 6 37500

Table 17 – LoRa electrical characteristics

Symbol	Description	Conditions	Min	Тур.	Max	Unit
		LNABoost Off, BW=125KHz	-	9.7	_	mA
		LNABoost Off, BW=250KHz	-	10.5	-	mA
IDDR_L	Supply current in receiver	LNABoost Off, BW=500KHz	-	12	-	mA
IDDK_L	LoRa mode	LNABoost On, BW=125KHz	-	10.8	-	mA
		LNABoost On, BW=250KHz	-	11.6	-	mA
		LNABoost On, BW=500KHz	-	13	-	mA
IDDT L	Supply current in transmitter	RFOP = 13dBm	-	28	-	mA
IDD1_L	mode	RFOP = 7dBm	-	18	-	mA
IDDT_H_L	Supply current in transmitter mode with an external impedance transformer	Using PA_BOOST pin	_	90		mA
IDD1_I1_L		RFOP = 17 dBm		90		IIIA
	Blocking Immunity, FRF=868MHz CW interferer	Offset = ±1 MHz	-	82.5	_	dB
BI_L		Offset = ±2 MHz	-	86.5	_	dB
		Offset = ±10 MHz	-	89	_	dB
IIP3_L	3rd order input intercept point, highest LNA gain,	F1 = FRF + 1MHz		-12.5		dBm
IIF3_L	FRF=868MHz, CW interferer	F2 = FRF + 1.995MHz		-12.5		UDIII
IIP2_L	2nd order input intercept	F1 = FRF + 20MHz		57	_	dBm
11°Z_L	point, highest LNA gain, FRF=868MHz, CW interferer	F2 = FRF + 20MHz + Δf	_	37	_	UDIII
BR_L	Bit rate, Long-Range Mode	From SF6, CR=4/5, BW=500 kHz to SF12, CR=4/8, BW = 125kHz	0.24	-	37.5	kbps

Table 17 – LoRa electrical characteristics

Symbol	Description	Conditions	Min	Тур.	Max	Unit
		SF = 6	_	-121	-	dBm
		SF = 7	_	-124	-	dBm
	RF sensitivity, Long-Range	SF = 8	-	-127	-	dBm
RFS_L125	Mode, highest LNA gain, LNA boost, 125kHz bandwidth	SF = 9	-	-130	-	dBm
	using split Rx/Tx path	SF = 10	_	-133	_	dBm
		SF = 11	_	-135	_	dBm
		SF = 12	_	-137	_	dBm
		SF = 6	_	-118	_	dBm
		SF = 7	_	-122	_	dBm
	RF sensitivity, Long-Range	SF = 8	_	-125	_	dBm
RFS_L250	Mode, highest LNA gain, LNA boost, 250kHz bandwidth	SF = 9	_	-128	_	dBm
	using split Rx/Tx path	SF = 10	_	-130	_	dBm
		SF = 11	_	-132	_	dBm
		SF = 12	_	-135	_	dBm
		SF = 6	_	-111	_	dBm
		SF = 7	_	-116	_	dBm
	RF sensitivity, Long-Range	SF = 8	_	-119	_	dBm
RFS_L500	Mode, highest LNA gain, LNA boost, 500kHz bandwidth	SF = 9	_	-122	_	dBm
	using split Rx/Tx path	SF = 10	_	-125	_	dBm
		SF = 11	-	-128	-	dBm
		SF = 12	-	-129	_	dBm

Table 17 – LoRa electrical characteristics

Symbol	Description	Conditions	Min	Тур.	Max	Unit
		SF = 7	-	5	-	dB
		SF = 8	-	9.5	-	dB
CCR_LCW		SF = 9	-	12	_	dB
CCK_LCW		SF = 10	-	14.4	-	dB
		SF = 11	-	17	-	dB
		SF = 12	-	19.5	-	dB
CCR_LL	Co-channel rejection	Interferer is a LoRa signal using the same BW and SF. Pw = sensitivity + 3dB	-	-6	-	dB
ACR_LCW	Adjacent channel rejection FRF = 868 MHz	Interferer is 1.5*BW_L from the wanted signal centre frequency 1% PER, Single CW tone = Sensitivity + 3dB				
		SF = 7	_	60	_	dB
		SF = 12	-	72	-	dB
IMR_LCW	Image rejection after calibration	1% PER, Single CW tone = sensitivity + 3dB	_	66	_	dB
	Maximum tolerated frequency	BW_L = 125kHz	-30	_	30	kHz
FERR_L	offset between transmitter and receiver, no sensitivity	BW_L = 250kHz	-60	_	60	kHz
	degradation	BW_L = 500kHz	-120	_	120	kHz

Table 18 – LoRa power consumption

Symbol	Description	Conditions	Min	Тур.	Max	Unit
IDDSL	Supply current in sleep mode		-	0.1	1	μΑ
IDDIDLE	Supply current in idle mode	RC oscillator enabled	-	1.5	-	μΑ
IDDST	Supply current in standby mode	Crystal oscillator enabled	-	1.4	1.6	mA
IDDFS	Supply current in synthesizer mode	FSRx	-	4.5	-	mA
IDDD	Supply current in receive	LnaBoost Off	_	10.5	_	mA
IDDR	mode	LnaBoost On	_	11.2	_	mA
		RFOP=+ 20 dBm on PA_BOOST	_	125	_	mA
IDDT	Supply current in transmit mode with impedance matching	RFOP=+ 17 dBm on PA_BOOST	_	90	_	mA
IDDT		RFOP=+ 13 dBm on RFO pin	_	28	-	mA
		RFOP=+ 7 dBm on RFO pin	_	18	-	mA

15.0 Sigfox

15.1 Frequencies

Table 19 – Supported sigfox regions

Region	Uplink Frequency (Hz)	Downlink Frequency (Hz)
RCZ1 (Europe)	868130000	869525000
RCZ2 (US)	902200000	905200000
RCZ3 (Korea and Japan)	923200000	922200000
RCZ4 (South America, Australia and New Zealand).	920800000	922300000

Table 20 – Sigfox modem performance

Parameter		Min	Тур.	Max	Unit
	RCZ1	_	100	-	bps
Data Rate	RCZ2	_	600	-	bps
Data Rate	RCZ3	_	100	-	bps
	RCZ4	-	600	-	bps
	RCZ1	-	+14	-	dBm
TX Power	RCZ2	_	+20	_	dBm
1 A Power	RCZ3	_	+14	_	dBm
	RCZ4	_	+20	-	dBm
RX Sensitivity		_	-126	-	dBm
	RCZ1 TX	-	42	-	mA
	RCZ1 RX	_	11.2	-	mA
	RCZ2 TX	-	125	-	mA
Current Draw	RCZ2 RX	-	11.2	-	mA
Cullent Diaw	RCZ3 TX	_	42	-	mA
	RCZ3 RX	-	11.2	-	mA
	RCZ4 TX	-	125	-	mA
	RCZ4 RX	-	11.2	-	mA

16.0 LTE CAT-M1/NB-IoT

16.1 Supported features

- 12 bands supported from 699Mhz to 2690Mhz (Total worldwide support)
- 3GPP release 13 LTE Advanced Pro
- Supports narrowband LTE UE categories M1/NB1
- Integrated baseband, RF, RAM memory and power management

- Reduced TX power class option
- Extended DRX (eDRX) and PSM features for long sleep duration use cases

16.2 Specifications

Table 21 – Supported LTE modes

Parameter		Min	Тур.	Max	Unit
	LTE Cat M1 in 1.4 Mhz, HD-FDD - DL	-	300	-	kbps
Data vata	LTE Cat M1 in 1.4 Mhz, HD-FDD – UP	-	375	-	kbps
Data rate	LTE Cat NB1 in 200 kHz, HD-FDD - DL	_	40	_	kbps
	LTE Cat NB1 in 200 kHz, HD-FDD - UL	_	55	_	kbps

16.2.1 Supported LTE bands

Table 22 – Supported LTE bands

Bands	TX Frequencies	RX Frequencies	
Low Bands 5, 8, 12, 13, 18, 19, 20, 28	699 to 915 MHz	729 to 960 MHz	
Mid Bands 1, 2, 3, 4	1710 to 1980 MHz	1805 to 2170 MHz	

16.3 SIM Card requirements

Table 23 – SIM card specifications

Parameter	Min.	Тур.	Max	Unit
Form factor	_	Nano-SIM	-	-
Variant	-	USIM	-	-
Supply Voltage	_	1.8	_	V

16.4 Certified carriers

Table 24 – Certified carriers

Carrier	Country	Network
Verizon US	United States	LTE CAT-M1

17.0 6LoWPAN

Pycom is currently working on adding 6LoWPAN support to this module and plan to release a new firmware with this functionality in Q2 2018.

18.0 Electrical Characteristics

18.1 Absolute maximum ratings

Table 25 – Absolute maximum ratings

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Input Voltage	V_{IN}	3.5	-	5.5	V
Supply Output Current	I _{out}	_	-	1.2	А
Supply Output Voltage	V_{3V3}	-	3.3	-	٧
Storage Temperature	T_{STR}	-	-	-	°C
Operating Temperature	T_{OPR}	-40	_	85	°C
Moisture Sensitivity Level	MSL	-	1	-	-

18.2 Input/Output characteristics

Table 26 – Input/Output characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Input low voltage	V_{IL}	-0.3	-	0.25×V _{3V3}	V
Input high voltage	V_{IH}	0.75×V _{3V3}	-	V _{3V3} +0.3	V
Max Input sink current	I _{SINK}	_	6	12	mA
Input leakage current	I _{IL}	_	-	50	nA
Input pin capacitance	C_{pin}	_	-	2	pF
Output low voltage	V_{OL}	0.1×V _{3V3}	-	_	V
Output high voltage	V _{OH}	0.8×V _{3V3}	-	-	V
Max Output source current	I _{SOURCE}	-	6	12	mA

19.0 Minimum Recommended Circuit

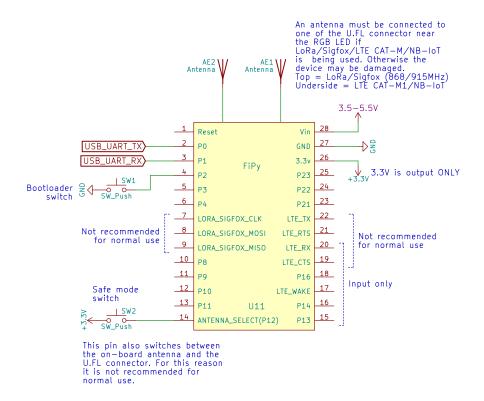


Figure 3 - Minimum required circuit

20.0 Mechanical Specifications

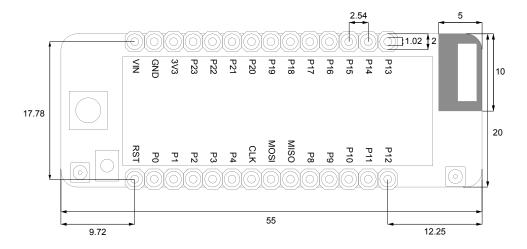


Figure 4 - Mechanical drawing (top down view) - Units: mm

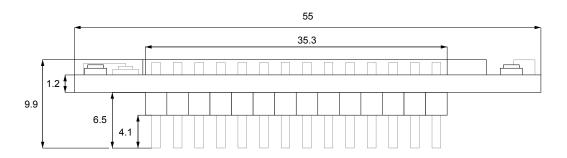


Figure 5 – Mechanical drawing (side view) – Units: mm

21.0 Recommended Land Pattern

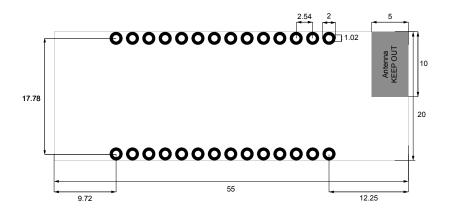


Figure 6 – Recommended land pattern (through hole) – Units: mm

22.0 Soldering Profile

This device is not recommended for reflow soldering. The plastic of the pin headers will melt, instead please hand solder the module or use sockets.

23.0 Ordering Information

Table 27 - Ordering information

Product EAN	Description
0700461341604	FiPy 1.0
0700461341703	LTE-M Antenna
0700461341680	External WiFi Antenna
0700461341697	IP67 Antenna Pigtail

Bundle	Contents		
	1x FiPy		
	1x Expansion Board or		
FiPy Multi-Pack	Pysense or Pytrack		
	1x LTE-M antenna		
	Available in quantities of 1, 2 or 5		

For more product accessories like expansion board or cases visit our website: http://www.pycom.io

24.0 Packaging

Figure 7 – Mechanical drawing of packaging – Units: mm

The module will come inside a reusable anti-static bag. If the module has headers it will also be inserted into anti-static foam. Total weight inc. packaging: 33g

25.0 Certification

FCC 2AJMTFIPY01R IC 22263-FIPY01R

CE 0700

Copies of the certificates can be found on our website.

Regulator Information

25.1 EU Regulatory Conformance

Hereby, Pycom Ltd declares that this device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC

25.2 Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

25.2.1 RF Warning Statement

To comply with FCC RF exposure compliance requirements, the antennas used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

25.2.2 OEM integrator conditions

This device is intended only for OEM integrators under the following conditions:

- 1. The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2. The transmitter module may not be co-located with any other transmitter or antenna.

As long as the two conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.

The module is limited to OEM installation ONLY. The module is limited to installation in mobile or fixed application. We hereby acknowledge our responsibility to provide guidance to the host manufacturer in the event that they require assistance for ensuring compliance with the Part 15 Subpart B requirements.

IMPORTANT NOTE: In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for reevaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

25.2.3 End Product Labelling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labelled in a visible area with the following: "Contains FCC ID: 2AJMTFIPY01R". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

The following FCC part 15.19 statement has to also be available on the label:

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:

- 1. this device may not cause harmful interference and
- 2. this device must accept any interference received, including interference that may cause undesired operation.

25.2.4 Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

In the user manual of the end product, the end user has to be informed that the equipment complies with FCC radio–frequency exposure guidelines set forth for an uncontrolled environment.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

The end user manual shall include all required regulatory information/warning as show in this manual.

The maximum operating ambient temperature of the equipment declared by the manufacturer is $-40 \sim +85C$ Receiver category 3

26.0 Revision History

Table 28 - Document revision history

Version 1.0 Initial Release